Discovery of novel biomolecular condensate drug targets in oncology using in silico predictive tools

Kadi L. Saar¹, Marius Rebmann¹, Mohammed Kanchwala¹, Seema Qamar¹, Prathima Radhakrishnan¹, Jasmine Cornish¹, Julia Doh¹, William Arter¹, Assaf Rotem¹, Mahmoud Ghandi¹, Andrew Seeber¹, Richard C. Centore¹ Martin Kulander¹ Tuomas P.J. Knowles^{1,2,3} Sarah A. Teichmann^{3,4} Shilpi Arora

¹Transition Bio, Cambridge, UK & Watertown, MA, US ² Yusuf Hamied Department of Chemistry, University of Cambridge, UK

³Cavendish Laboratory, Department of Physics, University of Cambridge, UK ⁴ Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK

Abstract # 4891

Predicted targets form condensates and are amenable to screening with Transition Bio's platform

1. In silico target ID pipeline predicted targets form condensates in a purified form (top) and in the disease models (bottom)

CTNNB1 condensates in colorectal cells with

Transition Bio has established a proprietary microfluidics and machine learning enabled molecular screen for identifying compounds that alter condensates

Neural network model generated, each with a different detects presence (red) or absence (blue) of concentration of protein, trigger condensates in each droplet

Phase diagrams are constructed to identify compounds that shift nhase houndary

Summarv

- · We developed machine learning models that link protein sequence to its propensity to form condensates
- Onco-fusions and proteins involved in splicing and transcription are predicted to requently function via condensate-based mechanisms
- · We combined -omics data with our predictive condensation models to identify genetic variations that lead to aberrant condensation
- · Predicted targets from in silico target identification pipeline (EML4-ALK, β-catenin) form condensates, phase separate in vitro and are amenable to screening with our platform

⁽left) & without (right) WNT pathway mutations