Discovery of novel biomolecular condensate drug targets in oncology using in silico predictive tools
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Train a multiclass classifier linking sequence to condensation

+ High cross-validation performance on training data

+/ Able to identify phase separating sequences from unseen data (80%
sensitivity at a decision threshold that captures 30% of the proteome)
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Oncofusions (OFs), transcription factors (TFs), and proteins associated
with chromatin remodeling and splicing have high predicted condensation
propensity relative to proteome (enrichment calculated with Fisher test)
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Enrichment

72% human TFs and 79% of TFs with selective dependency and/or tissue
specific expression in in vitro models are predicted to form condensates
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Proteome-wide in silico screen using the developed model predicts oncofusions (OFs) and
transcription factors (TFs) as protein classes that frequently form condensates

Several frequently occurring OFs are predicted to form condensates
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reduced survival in patient samples

Analyze if mutations elevate dependency in in vitro models or lead to

\ + 108 proteins with confirmed degron motifs. /
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propensity

73 proteins have a high phase separano/

- 41 genes have a strong
dependency in in vitro models
(minimum CRISPR Chronos
score < -1)

- 26 genes with

selective dependency,
(normality likelihood

ratio test?)
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Propose CTNNB1 (B-catenin) for
experimental validation due to
high frequency of the mutations
within the TCGA samples

' Martinez-Jimenez et al. Nat Cancer, 2019

\2 McDonald ll et al Cell, 2017
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mutations in the identified driver region

Dependency

TCGA survival data suggests patients with higher
level of beta-catenin have a worse survival
prognosis (pancreatic adenocarcinoma cohort)
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Intrinsically disordered proteins (IDPs) frequently form biomolecular condensates Hypothesis: Genetic variations can lead to aberrant condensation via Predicted targets form and are
increased intracellular abundance of the target protein to screening with Transition Bio’s platform
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2. Screen identifies compounds that modulate reconstituted and

cellular EML4-ALK condensates
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We developed machine learning models that link protein sequence to its propensity to

form condensates

Onco-fusions and proteins involved in splicing and transcription are predicted to
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Summary

frequently function via condensate-based mechanisms

We combined —omics data with our predictive condensation models to identify genetic

variations that lead to aberrant condensation

Predicted targets from in silico target identification pipeline (EML4-ALK, B-catenin) form
condensates, phase separate in vitro and are amenable to screening with our platform






